login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063466 Numbers k such that 2*phi(k) + 8 = sigma(k). 1
6, 15, 21, 33, 39, 51, 57, 69, 87, 93, 111, 123, 129, 141, 159, 175, 177, 183, 201, 213, 219, 237, 249, 267, 291, 303, 309, 321, 327, 339, 381, 393, 411, 417, 447, 453, 471, 489, 501, 519, 537, 543, 573, 579, 591, 597, 633, 669, 681, 687, 699, 717, 723, 753 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

For 16 < n < 10^8, a(n) = 3*prime(n). Note also that a(n) is odd for n > 1. - Charles R Greathouse IV, Nov 19 2015

LINKS

Harry J. Smith, Table of n, a(n) for n = 1..10000

EXAMPLE

If p is a prime other than 3, 2*phi(3p) = 2(2p-2) = 4p - 4, sigma(3p) = 4p + 4, 2*phi(3p) + 8 = sigma(3p). So numbers of the form 3p are in the sequence. Also if k=175, phi(175) = 120, sigma(175) = 248, thus 2*phi(175) + 8 = sigma(175), so 175 is here. Note that 175 is not of the form 3p. No additional terms not of the form 3p were found below 100000.

MATHEMATICA

Select[Range[800], 2*EulerPhi[#]+8==DivisorSigma[1, #]&] (* Harvey P. Dale, Dec 28 2017 *)

PROG

(PARI) n=-1; for (m=1, 10^9, if (sigma(m) - 2*eulerphi(m) == 8, write("b063466.txt", n++, " ", m); if (n==1000, break))) \\ Harry J. Smith, Aug 22 2009

(PARI) is(n)=my(f=factor(n)); 2*eulerphi(f)+8 == sigma(f) \\ Charles R Greathouse IV, Nov 19 2015

CROSSREFS

Cf. A000010, A000203.

Sequence in context: A330205 A015793 A261078 * A138109 A332877 A072521

Adjacent sequences:  A063463 A063464 A063465 * A063467 A063468 A063469

KEYWORD

nonn

AUTHOR

Labos Elemer, Jul 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 7 04:21 EST 2021. Contains 349567 sequences. (Running on oeis4.)