|
|
A063232
|
|
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 77 ).
|
|
3
|
|
|
5, 16, 24, 36, 44, 56, 64, 76, 84, 96, 104, 116, 124, 136, 144, 156, 164, 176, 184, 196, 204, 216, 224, 236, 244, 256, 264, 276, 284, 296, 304, 316, 324, 336, 344, 356, 364, 376, 384, 396, 404, 416, 424, 436, 444, 456, 464, 476, 484, 496, 504, 516, 524, 536
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Also dimension of the space of weight 2n cuspidal newforms for Gamma_0( 93 ).
|
|
LINKS
|
|
|
FORMULA
|
a(n) = 5+10*(n-1)+(-1)^n+{C[2*(n-1),n-1] mod 2}, with n>=1. - Paolo P. Lava, Nov 20 2009
Except for the first term, a(n) = 20*(n-1)-a(n-1), (with a(2)=16). - Vincenzo Librandi, Dec 07 2010
a(n) = -5+(-1)^n+10*n for n>1. a(n)=a(n-1)+a(n-2)-a(n-3) for n>4; G.f.: x*(x^3+3*x^2+11*x+5) / ((x-1)^2*(x+1)). - Colin Barker, Sep 08 2013
|
|
MATHEMATICA
|
Table[5 + 10 (n - 1) + (-1)^n + Mod[Binomial[2 (n - 1), n - 1], 2], {n, 50}] (* Wesley Ivan Hurt, May 25 2014 *)
LinearRecurrence[{1, 1, -1}, {5, 16, 24, 36}, 60] (* Harvey P. Dale, Aug 21 2017 *)
|
|
PROG
|
(PARI) A063232(n)=10*n-3-bittest(n, 0)*2-(n>1) - M. F. Hasler, Mar 05 2012
(Haskell)
a063232 n = a063232_list !! (n-1)
a063232_list = 5 : 16 : 24 : 36 : zipWith3 (((-) .) . (+))
(drop 3 a063232_list) (drop 2 a063232_list) (tail a063232_list)
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|