login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063232
Dimension of the space of weight 2n cuspidal newforms for Gamma_0( 77 ).
3
5, 16, 24, 36, 44, 56, 64, 76, 84, 96, 104, 116, 124, 136, 144, 156, 164, 176, 184, 196, 204, 216, 224, 236, 244, 256, 264, 276, 284, 296, 304, 316, 324, 336, 344, 356, 364, 376, 384, 396, 404, 416, 424, 436, 444, 456, 464, 476, 484, 496, 504, 516, 524, 536
OFFSET
1,1
COMMENTS
Also dimension of the space of weight 2n cuspidal newforms for Gamma_0( 93 ).
FORMULA
Except for the first term, a(n) = 20*(n-1)-a(n-1), (with a(2)=16). - Vincenzo Librandi, Dec 07 2010
a(n) = -5+(-1)^n+10*n for n>1. a(n)=a(n-1)+a(n-2)-a(n-3) for n>4; G.f.: x*(x^3+3*x^2+11*x+5) / ((x-1)^2*(x+1)). - Colin Barker, Sep 08 2013
Sum_{n>=1} (-1)^(n+1)/a(n) = (sqrt(1+2/sqrt(5))*Pi - 1)/20. - Amiram Eldar, Jan 12 2024
MATHEMATICA
Table[5 + 10 (n - 1) + (-1)^n + Mod[Binomial[2 (n - 1), n - 1], 2], {n, 50}] (* Wesley Ivan Hurt, May 25 2014 *)
LinearRecurrence[{1, 1, -1}, {5, 16, 24, 36}, 60] (* Harvey P. Dale, Aug 21 2017 *)
PROG
(PARI) A063232(n)=10*n-3-bittest(n, 0)*2-(n>1) \\ M. F. Hasler, Mar 05 2012
(Haskell)
a063232 n = a063232_list !! (n-1)
a063232_list = 5 : 16 : 24 : 36 : zipWith3 (((-) .) . (+))
(drop 3 a063232_list) (drop 2 a063232_list) (tail a063232_list)
-- Reinhard Zumkeller, May 03 2015
CROSSREFS
Sequence in context: A299124 A278415 A063243 * A087747 A352754 A090785
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jul 10 2001
STATUS
approved