login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062986 Coefficient array for certain polynomials N(5; k,x) (rising powers in x). 5
1, 5, -10, 10, -5, 1, 35, -170, 415, -629, 630, -420, 180, -45, 5, 285, -2315, 9381, -24395, 44625, -59880, 60015, -45040, 25025, -10010, 2730, -455, 35, 2530, -29379, 169405, -633675, 1703700, -3467145, 5497640, -6903325 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

The g.f. for the sequence of column r=4*k+j, k >= 0, j=1,2,3,4, of the staircase array A062985(n,r) is N(5; k,x)*(x^(k+1))/(1-x)^(4*k+1+j) with N(5; k,x) := sum(a(k,p)*x^p,p=0..4*k).

The m=0 column gives A002294(k+1). The row sums give A000012 (powers of 1) and (unsigned) A062987.

The sequence of step width of this staircase array is [1,4,4,4,...], i.e. the degree of the row polynomials is [0,4,8,12,...]= A008586.

LINKS

Table of n, a(n) for n=0..35.

FORMULA

a(k, p) := [x^p]N(5; k, x) with N(5; k, x)=(N(5; k-1, x)- A002294(k)*(1-x)^(4*k+1))/x, N(5; 0, x) := 1.

a(n, k)= a(n-1, k+1)+((-1)^k)*binomial(4*n+1, k+1)*binomial(5*n+1, n)/(5*n+1) if k=0, .., (4*n-5); a(n, k)= ((-1)^k)*binomial(4*n+1, k+1)*binomial(5*n+1, n)/(5*n+1) if k=(4*n-4), ..., 4*n; else 0.

EXAMPLE

{1}; {5,-10,10,-5,1}; {35,-170,415,-629,630,-420,180,-45,5}; ...; N(5; 1,x)= 5-10*x+10*x^2-5*x^3+x^4 = (1-(1-x)^5)/x.

CROSSREFS

A062991, A062746, A062751.

Sequence in context: A087109 A063261 A131891 * A291380 A280718 A321357

Adjacent sequences:  A062983 A062984 A062985 * A062987 A062988 A062989

KEYWORD

sign,easy,tabf

AUTHOR

Wolfdieter Lang, Jul 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 21 08:34 EDT 2019. Contains 326162 sequences. (Running on oeis4.)