login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062989
a(n) = C(n+6, 6) - n - 1.
7
0, 5, 25, 80, 205, 456, 917, 1708, 2994, 4995, 7997, 12364, 18551, 27118, 38745, 54248, 74596, 100929, 134577, 177080, 230209, 295988, 376717, 474996, 593750, 736255, 906165, 1107540, 1344875, 1623130, 1947761, 2324752, 2760648, 3262589, 3838345, 4496352
OFFSET
0,2
COMMENTS
In the Frey-Sellers reference this sequence is called {(n+2) over 6}_{4}, n >= 0.
LINKS
D. D. Frey and J. A. Sellers, Generalizing Bailey's generalization of the Catalan numbers, The Fibonacci Quarterly, 39 (2001) 142-148.
FORMULA
a(n) = A062985(n+2, 6) = (n+1)*(n+2)*(n^4 + 24*n^3 + 221*n^2 + 954*n + 1800)/6!.
G.f.: N(5;1, x)/(1-x)^7 with N(5;1, x)= 5-10*x+10*x^2-5*x^3+x^4 = (1-(1-x)^5)/x polynomial of second row of A062986.
a(0)=0, a(1)=5, a(2)=25, a(3)=80, a(4)=205, a(5)=456, a(6)=917, a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7). - Harvey P. Dale, Aug 08 2013
D-finite with recurrence -n*a(n) +(n+6)*a(n-1) +5*n=0. - R. J. Mathar, Nov 22 2024
MATHEMATICA
Table[Binomial[n+6, 6]-n-1, {n, 0, 40}] (* OR *) LinearRecurrence[ {7, -21, 35, -35, 21, -7, 1}, {0, 5, 25, 80, 205, 456, 917}, 40] (* Harvey P. Dale, Aug 08 2013 *)
PROG
(PARI) { for (n=0, 1000, write("b062989.txt", n, " ", binomial(n + 6, 6) - n - 1) ) } \\ Harry J. Smith, Aug 15 2009
CROSSREFS
Seventh column (r=6) of FS(5) staircase array A062985.
Partial sums of A062988.
Sequence in context: A366158 A243303 A238449 * A122679 A264132 A355949
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Jul 12 2001
EXTENSIONS
Simpler definition from Zerinvary Lajos, May 08 2006
STATUS
approved