login
A062742
Index j of prime p(j) such that floor(p(j)/j) = n is first satisfied.
7
2, 1, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235, 1617175, 4124437, 10553415, 27066974, 69709680, 179992909, 465769803, 1208198526, 3140421716, 8179002096, 21338685407, 55762149030, 145935689361
OFFSET
1,1
LINKS
FORMULA
a(n) = Min_{j| floor(p(j)/j) = n}. Note that neither p(j)/j nor floor(p(j)/j) is monotonic.
a(n) = pi(A062743(n)).
a(n) = A038606(n) = A038624(n) for n >= 3. - Jaroslav Krizek, Dec 13 2009
EXAMPLE
The q(j)=p(j)/j quotient when the value 14 first appears: {j=251706, p(j)=3523841, q(j)=13.9998291} {251707, 3523901, 14.0000119} {251708, 3523903, 13.9999642} {251709, 3523921, 13.9999801} {251710, 3523957, 14.0000675} {251711, 3523963, 14.0000357}
PROG
(PARI) {a062742(m)=local(n, j); for(n=1, m, j=1; while(floor(prime(j)/j)!=n, j++); print1(j, ", "))} a062742(10^7)
CROSSREFS
Essentially the same as A038624.
Cf. A038606. - R. J. Mathar, Jan 30 2009
Sequence in context: A013161 A012926 A013157 * A009821 A009831 A012931
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 12 2001
EXTENSIONS
More terms from Jason Earls, May 15 2002
a(17)-a(28) from Farideh Firoozbakht and Robert G. Wilson v, Sep 13 2005
a(29)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018
STATUS
approved