login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A062742 Index j of prime p(j) such that Floor[p(j)/j]=n is first satisfied. 7
2, 1, 12, 31, 69, 181, 443, 1052, 2701, 6455, 15928, 40073, 100362, 251707, 637235, 1617175, 4124437, 10553415, 27066974, 69709680, 179992909, 465769803, 1208198526, 3140421716, 8179002096, 21338685407, 55762149030, 145935689361 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Giovanni Resta, Table of n, a(n) for n = 1..50

FORMULA

a(n) = Min{j| Floor[p(j)/j] = n}. Note that neither p(j)/j nor Floor[p(j)/j] is monotonic.

a(n) = pi(A062743(n))

a(n) = A038606(n) = A038624(n) for n >= 3. [From Jaroslav Krizek, Dec 13 2009]

EXAMPLE

The q(j)=p(j)/j quotient when value 14 first appears: {j=251706, p(j)=3523841, q(j)=13.9998291} {251707, 3523901, 14.0000119} {251708, 3523903, 13.9999642} {251709, 3523921, 13.9999801} {251710, 3523957, 14.0000675} {251711, 3523963, 14.0000357}

PROG

(PARI) {a062742(m)=local(n, j); for(n=1, m, j=1; while(floor(prime(j)/j)!=n, j++); print1(j, ", "))} a062742(10^7)

CROSSREFS

Essentially the same as A038624.

Cf. A038606. [From R. J. Mathar, Jan 30 2009]

Sequence in context: A013161 A012926 A013157 * A009821 A009831 A012931

Adjacent sequences:  A062739 A062740 A062741 * A062743 A062744 A062745

KEYWORD

nonn

AUTHOR

Labos Elemer, Jul 12 2001

EXTENSIONS

More terms from Jason Earls, May 15 2002

a(17)-a(28) from Farideh Firoozbakht and Robert G. Wilson v, Sep 13 2005

a(29)-a(50) obtained from the values of A038625 computed by Jan Büthe. - Giovanni Resta, Sep 01 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 19 00:12 EST 2019. Contains 329310 sequences. (Running on oeis4.)