login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062738
Number of connected labeled relations.
9
1, 2, 12, 432, 61344, 32866560, 68307743232, 561981464819712, 18437720675374485504, 2417519433343618432696320, 1267602236528793479228867346432, 2658428102191640176274135259655176192, 22300681394917309655766001890404571062206464
OFFSET
0,2
COMMENTS
a(n) is the number of binary relations R on {1, 2, ..., n} such that the reflexive, symmetric, and transitive closure of R is the trivial relation.
FORMULA
E.g.f.: 1+log( Sum_{n >= 0} 2^(n^2)*x^n/n! ).
MAPLE
a:= n-> n!*coeff(series(1+log(add(2^(i^2)*x^i/i!, i=0..n)), x, n+1), x, n):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 16 2011
MATHEMATICA
nn = 20; a = Sum[2^(n^2) x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[Log[a] + 1, {x, 0, nn}], x] (* Geoffrey Critzer, Oct 17 2011 *)
PROG
(PARI) v=Vec(1+log(sum(n=0, 10, 2^(n^2)*x^n/n!))); for(i=1, #v, v[i]*=(i-1)!); v \\ Charles R Greathouse IV, Feb 14 2011
CROSSREFS
Cf. A003027.
Sequence in context: A012428 A012786 A168504 * A350790 A296623 A009510
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jul 12 2001
STATUS
approved