login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062357
a(n) = n*p(n+1)-(n+1)*p(n) = n*d(n)-p(n), where p(n) is the n-th prime and d(n) is the n-th prime-difference, A001223(n).
2
-1, 1, 1, 9, -1, 11, -3, 13, 31, -9, 35, 11, -15, 13, 43, 43, -25, 47, 9, -31, 53, 9, 55, 103, 3, -49, 5, -51, 7, 307, -3, 61, -71, 201, -79, 65, 65, -11, 67, 67, -97, 239, -105, -17, -107, 353, 353, -31, -129, -29, 73, -135, 289, 73, 73, 73, -155, 77, -41, -161, 327, 575, -55, -183, -53, 607, 71, 343, -209, -69, 73, 217
OFFSET
1,4
COMMENTS
A sequence based on the solution of the equation: 1+(1+n)*prime(n)/x-n*prime(n+1)/x=0 for x. This is an irrational rotation-like sequence: the sequence is similar to a Beatty sequence. - Roger L. Bagula, Jun 06 2002
LINKS
FORMULA
a(n) = n*A000040(n+1) - (n+1)*A000040(n) = n*A001223(n) - A000040(n).
EXAMPLE
n = 10: a(10) = 10*31-11*29 = 310-319 = -9;
n = 54: a(54) = 54*257-55*251 = 13878-13805 = 73;
n = 55: a(55) = 55*263-56*257 = 14465-14392 = 73; consecutive terms are often equal to each other.
MAPLE
seq(n*ithprime(n+1)-(n+1)*ithprime(n), n=1..80); # Muniru A Asiru, Jun 29 2018
MATHEMATICA
Table[(Prime[w+1]-Prime[w])*w-Prime[w], {w, 1, 1024}]
PROG
(PARI) a(n)={n*prime(n + 1) - (n + 1)*prime(n)} \\ Harry J. Smith, Aug 06 2009
(Magma) [n*NthPrime(n + 1) - (n + 1)*NthPrime(n): n in [1..75]]; // Vincenzo Librandi, Jun 29 2018
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Labos Elemer, Jul 13 2001
STATUS
approved