The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A062301 Number of ways writing n-th prime as a sum of two primes. 7
 0, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS a(n) = 1 if and only if n is in A006512. - Robert Israel, Apr 04 2018 LINKS Muniru A Asiru, Table of n, a(n) for n = 1..3000 MAPLE a:= n-> `if`(isprime(ithprime(n)-2), 1, 0): seq(a(n), n=1..105);  # Alois P. Heinz, Oct 02 2020 MATHEMATICA Table[Sum[(PrimePi[Prime[n] - i] - PrimePi[Prime[n] - i - 1]) (PrimePi[i] - PrimePi[i - 1]), {i, Floor[Prime[n]/2]}], {n, 100}] (* Wesley Ivan Hurt, Apr 04 2018 *) PROG (PARI) a(n) = isprime(prime(n) - 2) \\ David A. Corneth, Apr 04 2018 (GAP) P:=Filtered([1..1000], IsPrime);; a:=List(List(List(P, i -> Partitions(i, 2)), k -> Filtered(k, i -> IsPrime(i[1]) and IsPrime(i[2]))), Length); # Muniru A Asiru, Apr 05 2018 CROSSREFS Equals A061358(A000040(n)). Cf. A006512, A014092, A025584. Sequence in context: A284932 A117814 A257000 * A181712 A288729 A286807 Adjacent sequences:  A062298 A062299 A062300 * A062302 A062303 A062304 KEYWORD nonn AUTHOR Labos Elemer, Jul 05 2001 EXTENSIONS Offset changed to 1 by David A. Corneth, Apr 04 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 27 01:02 EDT 2020. Contains 338035 sequences. (Running on oeis4.)