OFFSET
0,2
COMMENTS
Define a triangle with left (first) column T(n,0)=n^2 for n=0,1,2,3.. and the remaining terms T(r,c) = T(r-1,c-1) + 2*T(r,c-1). Then T(n,n) = a(n) on the diagonal. T(n,1) = A056105(n). - J. M. Bergot, Jan 26 2013
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..200
Index entries for linear recurrences with constant coefficients, signature (9,-27,27).
FORMULA
G.f.: 2*x*(1+x)/(1-3*x)^3. - Ralf Stephan, Mar 13 2003
a(n) = 2*A077616(n). - R. J. Mathar, Jan 29 2013
E.g.f.: 2*x*(1+2*x)*exp(3*x). - G. C. Greubel, Jun 06 2019
MATHEMATICA
Table[2*3^(n-2)*n*(1+2*n), {n, 0, 30}] (* G. C. Greubel, Jun 06 2019 *)
LinearRecurrence[{9, -27, 27}, {0, 2, 20}, 30] (* Harvey P. Dale, Jun 08 2022 *)
PROG
(PARI) { for (n=0, 200, write("b062189.txt", n, " ", n*(4*n + 2)*3^(n - 2)) ) } \\ Harry J. Smith, Aug 02 2009
(Magma) [2*3^(n-2)*n*(1+2*n): n in [0..30]]; // G. C. Greubel, Jun 06 2019
(Sage) [2*3^(n-2)*n*(1+2*n) for n in (0..30)] # G. C. Greubel, Jun 06 2019
(GAP) List([0..30], n-> 2*3^(n-2)*n*(1+2*n)) # G. C. Greubel, Jun 06 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 13 2001
STATUS
approved