login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062189
a(n) = 2 * 3^(n-2)*n*(1+2*n).
2
0, 2, 20, 126, 648, 2970, 12636, 51030, 198288, 747954, 2755620, 9959598, 35429400, 124357194, 431530092, 1482720390, 5050815264, 17075199330, 57338232372, 191385721566, 635369601960, 2099044209402, 6903833113980
OFFSET
0,2
COMMENTS
Define a triangle with left (first) column T(n,0)=n^2 for n=0,1,2,3.. and the remaining terms T(r,c) = T(r-1,c-1) + 2*T(r,c-1). Then T(n,n) = a(n) on the diagonal. T(n,1) = A056105(n). - J. M. Bergot, Jan 26 2013
FORMULA
a(n) = A002943(n)*A000244(n-2). Binomial transform of A007758.
G.f.: 2*x*(1+x)/(1-3*x)^3. - Ralf Stephan, Mar 13 2003
a(n) = 2*A077616(n). - R. J. Mathar, Jan 29 2013
E.g.f.: 2*x*(1+2*x)*exp(3*x). - G. C. Greubel, Jun 06 2019
MATHEMATICA
Table[2*3^(n-2)*n*(1+2*n), {n, 0, 30}] (* G. C. Greubel, Jun 06 2019 *)
LinearRecurrence[{9, -27, 27}, {0, 2, 20}, 30] (* Harvey P. Dale, Jun 08 2022 *)
PROG
(PARI) { for (n=0, 200, write("b062189.txt", n, " ", n*(4*n + 2)*3^(n - 2)) ) } \\ Harry J. Smith, Aug 02 2009
(Magma) [2*3^(n-2)*n*(1+2*n): n in [0..30]]; // G. C. Greubel, Jun 06 2019
(Sage) [2*3^(n-2)*n*(1+2*n) for n in (0..30)] # G. C. Greubel, Jun 06 2019
(GAP) List([0..30], n-> 2*3^(n-2)*n*(1+2*n)) # G. C. Greubel, Jun 06 2019
CROSSREFS
Sequence in context: A197042 A350549 A377508 * A203605 A373614 A094254
KEYWORD
nonn,easy
AUTHOR
Henry Bottomley, Jun 13 2001
STATUS
approved