|
|
A062188
|
|
a(n+1) = a(n) + a(floor(n/2)), with a(0)=0, a(1)=1.
|
|
4
|
|
|
0, 1, 1, 2, 3, 4, 5, 7, 9, 12, 15, 19, 23, 28, 33, 40, 47, 56, 65, 77, 89, 104, 119, 138, 157, 180, 203, 231, 259, 292, 325, 365, 405, 452, 499, 555, 611, 676, 741, 818, 895, 984, 1073, 1177, 1281, 1400, 1519, 1657, 1795, 1952, 2109, 2289, 2469, 2672, 2875, 3106
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Ivan Neretin, Table of n, a(n) for n = 0..10000
|
|
FORMULA
|
G.f. A(x) satisfies: A(x) = x * (1 + (1 + x)*A(x^2))/(1 - x). - Ilya Gutkovskiy, May 04 2019
|
|
EXAMPLE
|
a(6) = a(5)+a(2) = 4+1 = 5.
a(7) = a(6)+a(3) = 5+2 = 7.
|
|
MATHEMATICA
|
Join[{0}, Nest[Append[#, #[[-1]] + #[[Quotient[Length@#, 2]]]] &, {1, 1}, 53]] (* Ivan Neretin, Mar 03 2016 *)
|
|
PROG
|
(MAGMA) [n le 2 select n-1 else Self(n-1)+Self(Floor(n/2)): n in [1..60]]; // Vincenzo Librandi, Mar 03 2016
|
|
CROSSREFS
|
Cf. A033485, A062186, A062187.
Sequence in context: A304632 A306385 A039853 * A122129 A280909 A003413
Adjacent sequences: A062185 A062186 A062187 * A062189 A062190 A062191
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Henry Bottomley, Jun 13 2001
|
|
STATUS
|
approved
|
|
|
|