login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061700
Generalized Bell numbers.
1
1, 0, 0, 1, 1, 1, 4001, 42876, 347117, 792865081, 37062990505, 1164982989754, 2135094241854476, 289654511654619255, 24938050464296749001, 41388115708273073076689, 12793631315199589229518093, 2452257460931091883072686073, 3961922987460317585057396895353
OFFSET
0,7
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^3 = exp(Sum_{n>=3} x^n / (n!)^3). - Ilya Gutkovskiy, Jul 12 2020
CROSSREFS
Sequence in context: A236079 A045262 A203088 * A218641 A092722 A034306
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 19 2001
EXTENSIONS
More terms from Ilya Gutkovskiy, Jul 12 2020
STATUS
approved