login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061699
Generalized Bell numbers.
1
1, 0, 1, 1, 109, 1001, 128876, 4682637, 792013069, 75022864345, 17347941915130, 3306782335589129, 1063995670771466456, 344173484059603653963, 153912612667103172679837, 75571251960991348967876564, 46271172080109731069460430093, 32072712892330804080630204907257
OFFSET
0,5
LINKS
J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.
FORMULA
Sum_{n>=0} a(n) * x^n / (n!)^3 = exp(Sum_{n>=2} x^n / (n!)^3). - Ilya Gutkovskiy, Jul 12 2020
CROSSREFS
Sequence in context: A232039 A301743 A178263 * A359144 A239720 A096214
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jun 19 2001
EXTENSIONS
More terms from Ilya Gutkovskiy, Jul 12 2020
STATUS
approved