login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Generalized Bell numbers.
1

%I #10 Jul 12 2020 19:53:03

%S 1,0,1,1,109,1001,128876,4682637,792013069,75022864345,17347941915130,

%T 3306782335589129,1063995670771466456,344173484059603653963,

%U 153912612667103172679837,75571251960991348967876564,46271172080109731069460430093,32072712892330804080630204907257

%N Generalized Bell numbers.

%H J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.

%F Sum_{n>=0} a(n) * x^n / (n!)^3 = exp(Sum_{n>=2} x^n / (n!)^3). - _Ilya Gutkovskiy_, Jul 12 2020

%Y Cf. A061684, A061700.

%K nonn

%O 0,5

%A _N. J. A. Sloane_, Jun 19 2001

%E More terms from _Ilya Gutkovskiy_, Jul 12 2020