login
Generalized Bell numbers.
1

%I #10 Jul 12 2020 19:54:01

%S 1,0,0,1,1,1,4001,42876,347117,792865081,37062990505,1164982989754,

%T 2135094241854476,289654511654619255,24938050464296749001,

%U 41388115708273073076689,12793631315199589229518093,2452257460931091883072686073,3961922987460317585057396895353

%N Generalized Bell numbers.

%H J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.

%F Sum_{n>=0} a(n) * x^n / (n!)^3 = exp(Sum_{n>=3} x^n / (n!)^3). - _Ilya Gutkovskiy_, Jul 12 2020

%Y Cf. A061684, A061699.

%K nonn

%O 0,7

%A _N. J. A. Sloane_, Jun 19 2001

%E More terms from _Ilya Gutkovskiy_, Jul 12 2020