|
|
A061382
|
|
Decimal expansion of Pi/e.
|
|
14
|
|
|
1, 1, 5, 5, 7, 2, 7, 3, 4, 9, 7, 9, 0, 9, 2, 1, 7, 1, 7, 9, 1, 0, 0, 9, 3, 1, 8, 3, 3, 1, 2, 6, 9, 6, 2, 9, 9, 1, 2, 0, 8, 5, 1, 0, 2, 3, 1, 6, 4, 4, 1, 5, 8, 2, 0, 4, 9, 9, 7, 0, 6, 5, 3, 5, 3, 2, 7, 2, 8, 8, 6, 3, 1, 8, 4, 0, 9, 1, 6, 9, 3, 9, 4, 4, 0, 1, 8, 8, 4, 3, 4, 2, 3, 5, 6, 7, 3, 5, 5, 8, 8, 0, 4, 4, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
REFERENCES
|
Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 188.
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 1..20000
Solution of Problem 11771, The American Mathematical Monthly, 121 (2014).
|
|
FORMULA
|
Equals A000796 / A001113.
Equals Integral_{-inf..inf} cos(x)/(1 + x^2) dx. - Robert G. Wilson v
Equals Integral_{-inf..inf} cos(x)/(1 + x^2)^2 dx. - Amiram Eldar, Jul 21 2020
|
|
EXAMPLE
|
Pi/e ~= 1.15572734979092171791009318331269629912...
|
|
MATHEMATICA
|
RealDigits[ Pi/E, 10, 110][[1]] (* Or *) RealDigits[ Integrate[ Cos[x]/(1 + x^2), {x, -Infinity, Infinity}], 10, 111][[1]] (* Robert G. Wilson v Jan 15 2004 *)
|
|
PROG
|
(PARI) { default(realprecision, 20080); x=Pi/exp(1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b061382.txt", n, " ", d)) } \\ Harry J. Smith, Jul 22 2009
|
|
CROSSREFS
|
Cf. A061666 (continued fraction for Pi/e).
Cf. A001113, A000796.
Sequence in context: A249649 A226571 A274030 * A113272 A222392 A049471
Adjacent sequences: A061379 A061380 A061381 * A061383 A061384 A061385
|
|
KEYWORD
|
cons,nonn
|
|
AUTHOR
|
Jason Earls, Jun 08 2001
|
|
STATUS
|
approved
|
|
|
|