login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061382 Decimal expansion of Pi/e. 14

%I

%S 1,1,5,5,7,2,7,3,4,9,7,9,0,9,2,1,7,1,7,9,1,0,0,9,3,1,8,3,3,1,2,6,9,6,

%T 2,9,9,1,2,0,8,5,1,0,2,3,1,6,4,4,1,5,8,2,0,4,9,9,7,0,6,5,3,5,3,2,7,2,

%U 8,8,6,3,1,8,4,0,9,1,6,9,3,9,4,4,0,1,8,8,4,3,4,2,3,5,6,7,3,5,5,8,8,0,4,4,8

%N Decimal expansion of Pi/e.

%D Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 188.

%H Harry J. Smith, <a href="/A061382/b061382.txt">Table of n, a(n) for n = 1..20000</a>

%H Solution of <a href="http://www.jstor.org/discover/10.4169/amer.math.monthly.121.04.365">Problem 11771</a>, The American Mathematical Monthly, 121 (2014).

%F Equals A000796 / A001113.

%F Equals Integral_{-inf..inf} cos(x)/(1 + x^2) dx. - _Robert G. Wilson v_

%F Equals Integral_{-inf..inf} cos(x)/(1 + x^2)^2 dx. - _Amiram Eldar_, Jul 21 2020

%e Pi/e ~= 1.15572734979092171791009318331269629912...

%t RealDigits[ Pi/E, 10, 110][[1]] (* Or *) RealDigits[ Integrate[ Cos[x]/(1 + x^2), {x, -Infinity, Infinity}], 10, 111][[1]] (* _Robert G. Wilson v_ Jan 15 2004 *)

%o (PARI) { default(realprecision, 20080); x=Pi/exp(1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b061382.txt", n, " ", d)) } \\ _Harry J. Smith_, Jul 22 2009

%Y Cf. A061666 (continued fraction for Pi/e).

%Y Cf. A001113, A000796.

%K cons,nonn

%O 1,3

%A _Jason Earls_, Jun 08 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:41 EDT 2021. Contains 344009 sequences. (Running on oeis4.)