login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061338 Increase in maximal number of comparisons for sorting n elements by list merging. 4
0, 1, 2, 2, 4, 2, 3, 3, 8, 2, 3, 3, 5, 3, 4, 4, 16, 2, 3, 3, 5, 3, 4, 4, 9, 3, 4, 4, 6, 4, 5, 5, 32, 2, 3, 3, 5, 3, 4, 4, 9, 3, 4, 4, 6, 4, 5, 5, 17, 3, 4, 4, 6, 4, 5, 5, 10, 4, 5, 5, 7, 5, 6, 6, 64, 2, 3, 3, 5, 3, 4, 4, 9, 3, 4, 4, 6, 4, 5, 5, 17, 3, 4, 4, 6, 4, 5, 5, 10, 4, 5, 5, 7, 5, 6, 6, 33, 3, 4, 4 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Or, first differences of A003071. - Moshe Levin, Dec 28 2011

LINKS

Moshe Levin, Table of n, a(n) for n = 0..10000

Index entries for sequences related to sorting

FORMULA

For n > 0: a(n) = A003071(n) - A003071(n - 1) = A006519(n) + A000120(n) - 1. If n is a power of 2 then a(n) = n, otherwise a(n) = a(A053645(n)) + 1 where A053645(n) = n - 2^[log2(n)] is the amount by which n exceeds a power of 2.

G.f.: x/(1-x)^2 + 1/(1-x)*Sum(k>=1, (-1+(1-x)*2^(k-1))*x^2^k/(1-x^2^k)). - Ralf Stephan, Apr 17 2003

MATHEMATICA

nn=100; s={1}; m = Ceiling[Log[2, nn]]; Do[s=Join[s, {2^n}, s+1], {n, m}]; Prepend[Take[s, nn], 0] (* Moshe Levin, Dec 28 2011 *)

PROG

(Haskell)

a061338 0 = 0

a061338 n = a006519 n + a000120 n - 1  -- Reinhard Zumkeller, Dec 29 2011

CROSSREFS

Cf. A003071.

Sequence in context: A221861 A057939 A163371 * A135714 A103274 A046820

Adjacent sequences:  A061335 A061336 A061337 * A061339 A061340 A061341

KEYWORD

nonn

AUTHOR

Henry Bottomley, Apr 27 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 15 13:01 EDT 2018. Contains 316236 sequences. (Running on oeis4.)