login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061341
Numbers not ending in 0 whose cubes are concatenations of other cubes.
2
22, 303, 1006, 2272, 3003, 6001, 6006, 10006, 30003, 50015, 50024, 60001, 60006, 60025, 100006, 120015, 121925, 150005, 150012, 240005, 300003, 466085, 500015, 500024, 600001, 600006, 600025, 600075, 1000006, 1200015, 1500005, 1500012, 1500015, 2400005, 2500006
OFFSET
1,1
COMMENTS
From François Marques, Jul 11 2021: (Start)
If a and b are integers such that 3*a^2*b and 3*a*b^2 can be obtained as concatenations of cubes then a*10^k+b is a term in the list for k greater than the maximum of the number of digits in b^3, 3*a^2*b and 3*a*b^2.
Conjecture: the last digit of a(n) is in {1, 2, 3, 4, 5, 6, 8} and if it's 3 then there is k>=2 such that a(n) = 3*10^k+3.
(End)
LINKS
EXAMPLE
2272^3 = 11728027648 = 1_1728_0_27_64_8 (where the underscores indicate concatenation).
PROG
(PARI) can_split(v, b=10, p=3)=if(#v==0, 1, for(k=1, #v, if(ispower(fromdigits(v[1..k], b), p) && can_split(v[k+1..#v], b, p), return(1))); return(0));
isok(n, b=10, p=3)=if(n%b==0, return(0)); my(v=digits(n^p, b)); for(k=1, #v-1, if(ispower(fromdigits(v[1..k], b), p) && can_split(v[k+1..#v], b, p), return(1))); return(0); \\ François Marques, Jul 12 2021
(Python)
from sympy import integer_nthroot
def iscube(n): return integer_nthroot(n, 3)[1]
def ok3(n, c):
if n%10 == 9 or (c == 1 and n%10 == 0): return False
if c > 1 and iscube(n): return True
d = str(n)
for i in range(1, len(d)):
if iscube(int(d[:i])) and ok3(int(d[i:]), c+1): return True
return False
print([r for r in range(61000) if ok3(r**3, 1)]) # Michael S. Branicky, Jul 11 2021
CROSSREFS
Sequence in context: A155785 A077525 A083765 * A088279 A225898 A028109
KEYWORD
base,nonn
AUTHOR
Erich Friedman, Jun 06 2001
STATUS
approved