

A061145


Sum of continued fraction terms in Sum_{k=1..n}(1/k^2).


0



1, 5, 10, 13, 26, 44, 53, 37, 47, 58, 60, 80, 198, 78, 115, 93, 206, 271, 1583, 144, 278, 235, 148, 185, 913, 366, 185, 215, 500, 251, 1002, 2127, 8704, 539, 546, 307, 636, 278, 3326, 290, 386, 665, 694, 313, 422, 364, 498, 455, 967, 748, 460, 731, 484, 1496, 2005
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS



EXAMPLE

1 + 1/2^2 + 1/3^2 = 49/36 = 1 + 1/(2 + 1/(1 + 1/(3 + 1/3))). So a(3) = 1 + 2 + 1 + 3 + 3 = 10.


MATHEMATICA

Table[Sum[ContinuedFraction[Sum[1/i^2, {i, 1, n}]][[j]], {j, 1, Length[ContinuedFraction[Sum[1/i^2, {i, 1, n}]]]}], {n, 1, 80}] (* Stefan Steinerberger, Mar 24 2006 *)


CROSSREFS



KEYWORD

easy,nonn


AUTHOR



EXTENSIONS



STATUS

approved



