login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A061040
Denominator of 1/9 - 1/n^2.
12
1, 144, 225, 12, 441, 576, 81, 900, 1089, 48, 1521, 1764, 75, 2304, 2601, 324, 3249, 3600, 147, 4356, 4761, 64, 5625, 6084, 729, 7056, 7569, 100, 8649, 9216, 363, 10404, 11025, 1296, 12321, 12996, 507, 14400, 15129, 588, 16641, 17424
OFFSET
3,2
COMMENTS
See A061039 (numerators) for comments, references and links.
LINKS
Friedrich Paschen, Zur Kenntnis ultraroter Linienspektra, Annalen der Physik 27, pp. 537-570 (1908).
Index entries for linear recurrences with constant coefficients, signature (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1).
FORMULA
a(n) = denominator(n^2 - 9)/(9*n^2), n >= 3.
a(n) = (n^2)/9 if n == 3 or 24 (mod 27), a(n) = (n^2)/3 if n == 6 or 12 or 15 or 21 (mod 27), a(n) = n^2 if n == 0 (mod 9) and 9*n^2 otherwise. From the period length 27 sequence gcd(n^2 - 9, 9*n^2). - Wolfdieter Lang, Mar 15 2018
MATHEMATICA
Denominator[1/9-1/Range[3, 50]^2] (* Harvey P. Dale, Jan 16 2012 *)
PROG
(Haskell)
import Data.Ratio ((%), denominator)
a061040 n = denominator $ 1%9 - 1%n^2 -- Reinhard Zumkeller, Jan 03 2012
(PARI) a(n)=denominator(1/9 - 1/n^2) \\ Charles R Greathouse IV, Feb 07 2017
(Python)
from math import gcd
def A061040(n): return 9*n**2//gcd(n**2-9, 9*n**2) # Chai Wah Wu, Apr 02 2021
(Sage) [denominator(1/9 -1/n^2) for n in (3..50)] # G. C. Greubel, Mar 10 2022
CROSSREFS
Cf. A061039.
Sequence in context: A349064 A124144 A276564 * A159456 A316483 A064563
KEYWORD
nonn,frac,nice,easy
AUTHOR
N. J. A. Sloane, May 26 2001
STATUS
approved