|
|
A061040
|
|
Denominator of 1/9 - 1/n^2.
|
|
13
|
|
|
1, 144, 225, 12, 441, 576, 81, 900, 1089, 48, 1521, 1764, 75, 2304, 2601, 324, 3249, 3600, 147, 4356, 4761, 64, 5625, 6084, 729, 7056, 7569, 100, 8649, 9216, 363, 10404, 11025, 1296, 12321, 12996, 507, 14400, 15129, 588, 16641, 17424
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
3,2
|
|
COMMENTS
|
See A061039 (numerators) for comments, references and links.
|
|
LINKS
|
|
|
FORMULA
|
a(n) = denominator(n^2 - 9)/(9*n^2), n >= 3.
a(n) = (n^2)/9 if n == 3 or 24 (mod 27), a(n) = (n^2)/3 if n == 6 or 12 or 15 or 21 (mod 27), a(n) = n^2 if n == 0 (mod 9) and 9*n^2 otherwise. From the period length 27 sequence gcd(n^2 - 9, 9*n^2). - Wolfdieter Lang, Mar 15 2018
|
|
MATHEMATICA
|
|
|
PROG
|
(Haskell)
import Data.Ratio ((%), denominator)
(Python)
from math import gcd
(Sage) [denominator(1/9 -1/n^2) for n in (3..50)] # G. C. Greubel, Mar 10 2022
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,frac,nice,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|