OFFSET
0,3
LINKS
Harry J. Smith, Table of n, a(n) for n=0..1000
Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).
FORMULA
G.f.: x*(1+x^2)/((1-x)^3*(1-x^3)).
G.f.: x * (1 - x^4) / ((1 - x)^3 * (1 - x^2) * (1 - x^3)).
G.f.: ( (1 + 4*x + x^2) / (1 - x)^4 - 1 / (1 + x + x^2) ) / 9.
From Michael Somos, Aug 12 2009: (Start)
Euler transform of length 4 sequence [ 3, 1, 1, -1].
a(-2-n) = -a(n). (End)
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(1 + 7*x + 6*x^2 + x^3) - 3*cos(sqrt(3)*x/2)+ sqrt(3)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Sep 24 2024
EXAMPLE
x + 3*x^2 + 7*x^3 + 14*x^4 + 24*x^5 + 38*x^6 + 57*x^7 + 81*x^8 + ...
MATHEMATICA
Table[Floor[(n+1)^3/9+1/2], {n, 0, 50}] (* Harvey P. Dale, Jan 20 2013 *) (* or *)
LinearRecurrence[{3, -3, 2, -3, 3, -1}, {0, 1, 3, 7, 14, 24}, 47] (* Georg Fischer, Oct 13 2020 *)
PROG
(PARI) a(n) = { round((n + 1)^3/9) } \\ Harry J. Smith, Jul 16 2009
(PARI) {a(n) = n++; (n^3 - kronecker(-3, n)) / 9} /* Michael Somos, Aug 12 2009 */
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, May 14 2001
STATUS
approved