login
A060617
Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=7 and D varies.
0
0, 1, 18, 9600
OFFSET
7,3
REFERENCES
A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.
N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
EXAMPLE
For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.
CROSSREFS
Cf. A001286 (case where d=1). Cf. A060595 (number of 3-tilings) for terminology. A diagonal of A060638.
Sequence in context: A265450 A213402 A248804 * A222202 A201986 A153301
KEYWORD
nonn
AUTHOR
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001
STATUS
approved