The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060518 Primes p that have exactly two primitive roots that are not primitive roots mod p^2. 2
 367, 863, 907, 1327, 1549, 1579, 1607, 1619, 1697, 2221, 2267, 2551, 2671, 2677, 2693, 2719, 2837, 3209, 3313, 4049, 4373, 4391, 4909, 5261, 5669, 5693, 6007, 6269, 6343, 6547, 6653, 6703, 6857, 6907, 7013, 7559, 7573, 7583, 7669, 7723, 7919 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS If x is a primitive root mod prime p then either x is a primitive root mod p^2 or x has order p-1 mod p^2. LINKS EXAMPLE 159 and 205 are primitive roots mod 367, but not mod 367^2. CROSSREFS Cf. A060503, A055578, A060519, A060520. Sequence in context: A054827 A059230 A212378 * A065556 A068357 A067891 Adjacent sequences:  A060515 A060516 A060517 * A060519 A060520 A060521 KEYWORD nonn AUTHOR Jud McCranie, Mar 24 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 19:45 EST 2022. Contains 350504 sequences. (Running on oeis4.)