login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059831
Determinant of Wilkinson's eigenvalue test matrix of order 2n+1.
1
0, -2, -4, -20, -252, -5610, -187944, -8760272, -540315160, -42535905530, -4158250120140, -493938370048692, -70043599065844404, -11684931733886455730, -2264985487707963662992, -504752888883221450120000, -128137017404994234514023024
OFFSET
0,2
REFERENCES
P. Jansen and P. Weidner, High-accuracy arithmetic software - some tests of the ACRITH problem-solving routines, ACM Trans. Math. Software, 12 (1986), 62-70.
MathWorks, MATLAB Reference Guide, 1996.
EXAMPLE
The matrix of order 5:
2 1 0 0 0
1 1 1 0 0
0 1 0 1 0
0 0 1 1 1
0 0 0 1 2
MAPLE
with(LinearAlgebra): unprotect(D):
for n from 1 to 7 do N:=2*n+1; D:=Matrix(N, N, 0 );
for i from 1 to N-1 do D[i, i+1]:=1; D[i+1, i]:=1; od: for i from 1 to N do D[i, i]:=abs(n-i+1); od: lprint(Determinant(D)); od:
PROG
(MATLAB) for i = 0:7 a(i) = det(wilkinson(2*i+1)); end; a
CROSSREFS
Cf. A059834.
Sequence in context: A120388 A061348 A127103 * A064493 A145614 A145626
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Feb 25 2001
EXTENSIONS
More terms from David Wasserman, May 24 2002
STATUS
approved