login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Determinant of Wilkinson's eigenvalue test matrix of order 2n+1.
1

%I #5 Mar 31 2012 13:20:44

%S 0,-2,-4,-20,-252,-5610,-187944,-8760272,-540315160,-42535905530,

%T -4158250120140,-493938370048692,-70043599065844404,

%U -11684931733886455730,-2264985487707963662992,-504752888883221450120000,-128137017404994234514023024

%N Determinant of Wilkinson's eigenvalue test matrix of order 2n+1.

%D P. Jansen and P. Weidner, High-accuracy arithmetic software - some tests of the ACRITH problem-solving routines, ACM Trans. Math. Software, 12 (1986), 62-70.

%D MathWorks, MATLAB Reference Guide, 1996.

%e The matrix of order 5:

%e 2 1 0 0 0

%e 1 1 1 0 0

%e 0 1 0 1 0

%e 0 0 1 1 1

%e 0 0 0 1 2

%p with(LinearAlgebra): unprotect(D):

%p for n from 1 to 7 do N:=2*n+1; D:=Matrix(N, N, 0 );

%p for i from 1 to N-1 do D[i,i+1]:=1; D[i+1,i]:=1; od: for i from 1 to N do D[i,i]:=abs(n-i+1); od: lprint(Determinant(D)); od:

%o (MATLAB) for i = 0:7 a(i) = det(wilkinson(2*i+1)); end; a

%Y Cf. A059834.

%K sign

%O 0,2

%A _N. J. A. Sloane_, Feb 25 2001

%E More terms from _David Wasserman_, May 24 2002