login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059609
Numbers k such that 2^k - 7 is prime.
17
39, 715, 1983, 2319, 2499, 3775, 12819, 63583, 121555, 121839, 468523, 908739
OFFSET
1,1
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 39, p. 15, Ellipses, Paris 2008.
J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 395 pp. 55; 218, Ellipses Paris 2004.
Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 46-47.
Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, pp. 31, 75.
LINKS
Keith Conrad, Square patterns and infinitude of primes, University of Connecticut, 2019.
Jon Grantham and Andrew Granville, Fibonacci primes, primes of the form 2^n-k and beyond, arXiv:2307.07894 [math.NT], 2023.
Henri Lifchitz and Renaud Lifchitz, Search for 2^n-7, PRP Top Records.
EXAMPLE
k = 39, 2^39 - 7 = 549755813881 is prime.
MATHEMATICA
Select[Range[3, 20000], PrimeQ[2^# - 7] &] (* Vladimir Joseph Stephan Orlovsky, Feb 26 2011 *)
PROG
(PARI) is(n)=isprime(2^n-7) \\ Charles R Greathouse IV, Feb 17 2017
CROSSREFS
Cf. A096502.
Cf. Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), this sequence (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29).
Sequence in context: A363836 A341565 A034187 * A010955 A161652 A162168
KEYWORD
nonn,more
AUTHOR
Andrey V. Kulsha, Feb 02 2001
EXTENSIONS
a(8) from Henri Lifchitz, a(9)-a(10) from Gary Barnes, added by Max Alekseyev, Feb 09 2012
a(11) from Lelio R Paula, added by Max Alekseyev, Oct 25 2015
a(12) from Jon Grantham, Aug 09 2023
STATUS
approved