Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #61 Nov 28 2023 12:52:45
%S 39,715,1983,2319,2499,3775,12819,63583,121555,121839,468523,908739
%N Numbers k such that 2^k - 7 is prime.
%D J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 39, p. 15, Ellipses, Paris 2008.
%D J.-M. De Koninck and A. Mercier, 1001 Problemes en Theorie Classique Des Nombres, Problem 395 pp. 55; 218, Ellipses Paris 2004.
%D Wacław Sierpiński, Co wiemy, a czego nie wiemy o liczbach pierwszych. Warsaw: PZWS, 1961, pp. 46-47.
%D Wacław Sierpiński, O stu prostych, ale trudnych zagadnieniach arytmetyki. Warsaw: PZWS, 1959, pp. 31, 75.
%H Keith Conrad, <a href="https://kconrad.math.uconn.edu/blurbs/ugradnumthy/squaresandinfmanyprimes.pdf">Square patterns and infinitude of primes</a>, University of Connecticut, 2019.
%H Jon Grantham and Andrew Granville, <a href="https://arxiv.org/abs/2307.07894">Fibonacci primes, primes of the form 2^n-k and beyond</a>, arXiv:2307.07894 [math.NT], 2023.
%H Henri Lifchitz and Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=2%5En-7">Search for 2^n-7</a>, PRP Top Records.
%e k = 39, 2^39 - 7 = 549755813881 is prime.
%t Select[Range[3, 20000], PrimeQ[2^# - 7] &] (* _Vladimir Joseph Stephan Orlovsky_, Feb 26 2011 *)
%o (PARI) is(n)=isprime(2^n-7) \\ _Charles R Greathouse IV_, Feb 17 2017
%Y Cf. A096502.
%Y Cf. Sequences of numbers k such that 2^k - d is prime: A000043 (d=1), A050414 (d=3), A059608 (d=5), this sequence (d=7), A059610 (d=9), A096817 (d=11), A096818 (d=13), A059612 (d=15), A059611 (d=17), A096819 (d=19), A096820 (d=21), A057220 (d=23), A356826 (d=29).
%K nonn,more
%O 1,1
%A _Andrey V. Kulsha_, Feb 02 2001
%E a(8) from _Henri Lifchitz_, a(9)-a(10) from _Gary Barnes_, added by _Max Alekseyev_, Feb 09 2012
%E a(11) from Lelio R Paula, added by _Max Alekseyev_, Oct 25 2015
%E a(12) from _Jon Grantham_, Aug 09 2023