OFFSET
0,3
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..57
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001 [Th. 5].
MAPLE
A059490 := proc(n) local i, j, t1; t1 := (-1)^(n*(n-1)/2)*2^(n^2-n); for i to n do for j to n do t1 := t1*(4*j - 4*i + 1)/(j - i + n); end do end do; t1 end proc; # [Corrected by Sean A. Irvine, Sep 25 2022]
# second Maple program:
a:= n-> 2^(n*(n-1))*abs(mul(mul((4*(j-i)+1)/(j-i+n), j=1..n), i=1..n)):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
a[n_] := (-1)^(n*(n - 1)/2)*2^(n*(n - 1))*Product[Product[(4*(j - i) + 1)/(j - i + n), {i, 0, n - 1}], {j, 0, n - 1}]; Table[a[n], {n, 0, 20}] (* G. C. Greubel, Sep 10 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 04 2001
STATUS
approved