login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059490
Expansion of generating function A_{QT}^(1)(4n;2).
1
1, 1, 5, 105, 9009, 3128697, 4379132901, 24645892667825, 556965289746386625, 50494858759761851228625, 18354114596951084500741513125, 26735929307256782047733105984465625, 156023842049488378026019378718492161640625, 3646806710157227756289546514549111188854996015625
OFFSET
0,3
LINKS
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001 [Th. 5].
MAPLE
A059490 := proc(n) local i, j, t1; t1 := (-1)^(n*(n-1)/2)*2^(n^2-n); for i to n do for j to n do t1 := t1*(4*j - 4*i + 1)/(j - i + n); end do end do; t1 end proc; # [Corrected by Sean A. Irvine, Sep 25 2022]
# second Maple program:
a:= n-> 2^(n*(n-1))*abs(mul(mul((4*(j-i)+1)/(j-i+n), j=1..n), i=1..n)):
seq(a(n), n=0..20); # Alois P. Heinz, Sep 11 2017
MATHEMATICA
a[n_] := (-1)^(n*(n - 1)/2)*2^(n*(n - 1))*Product[Product[(4*(j - i) + 1)/(j - i + n), {i, 0, n - 1}], {j, 0, n - 1}]; Table[a[n], {n, 0, 20}] (* G. C. Greubel, Sep 10 2017 *)
CROSSREFS
Sequence in context: A200851 A203471 A015002 * A204109 A093979 A293261
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 04 2001
STATUS
approved