login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A059433
Triangle formed when the cumulative boustrophedon transform is applied to 1, 1, 1, 1, ..., read by rows from left to right.
3
1, 1, 2, 6, 3, 1, 1, 7, 16, 26, 168, 118, 69, 27, 1, 1, 169, 455, 810, 1192, 1575, 20355, 16153, 11952, 7920, 4343, 1576, 1, 1, 20356, 56864, 105324, 161704, 222427, 284726, 347026, 7544974, 6346546, 5148119, 3970048, 2848841, 1832958, 978779, 347027, 1
OFFSET
0,3
FORMULA
From Petros Hadjicostas, Feb 16 2021: (Start)
If 1 == i mod 2, then T(i,j) = A059434(i,j).
If 0 == i mod 2, then T(i,j) = A059434(i,i-j).
If 1 == i mod 2, then T(i,i) = A059434(i,i) = A059430(i).
If 0 == i mod 2, then T(i,0) = A059434(i,i) = A059430(i). (End)
EXAMPLE
Triangle T(i,j) (with rows i >= 0 and columns j = 0..i) begins:
1;
1, 2;
6, 3, 1;
1, 7, 16, 26;
168, 118, 69, 27, 1;
1, 169, 455, 810, 1192, 1575;
20355, 16153, 11952, 7920, 4343, 1576, 1;
1, 20356, 56864, 105324, 161704, 222427, 284726, 347026;
... - Petros Hadjicostas, Feb 16 2021
MATHEMATICA
nmax = 9; Clear[CBOUS2, c]; CBOUS2[a_List] := CBOUS2[a] = Module[{i, j, n, r }, n = Min[Length[a], nmax]; For[i = 0, i <= n - 1, i++, c[i, 0] = a[[i + 1]]]; For[i = n - 1, i <= nmax, i++, For[j = 1, j <= i, j++, c[i, j] = c[i, j - 1] + Sum[c[i - 1, i - r], {r, 1, j}]]]; Return[Table[ c[i, i], {i, 0, n - 1}]]]; Do[CBOUS2[Table[1, {n}]], {n, 0, nmax}]; Table[row = Table[c[i, j], {j, 0, i}]; If[OddQ[i], row, Reverse[row]], {i, 0, nmax - 1}] // Flatten (* Jean-François Alcover, Jul 14 2017, adapted from Maple code for A059430 *)
CROSSREFS
Sequence in context: A152549 A136759 A056129 * A021042 A136694 A164104
KEYWORD
nonn,tabl,easy
AUTHOR
N. J. A. Sloane, Jan 31 2001
EXTENSIONS
More terms from Floor van Lamoen, Oct 08 2001
STATUS
approved