|
|
A058624
|
|
McKay-Thompson series of class 30c for Monster.
|
|
2
|
|
|
1, -1, -1, 1, -1, -1, 3, 0, -2, 4, -3, -2, 6, -3, -4, 8, -6, -6, 13, -8, -8, 18, -9, -11, 26, -13, -15, 32, -19, -20, 47, -26, -29, 60, -34, -36, 82, -42, -49, 104, -58, -61, 136, -72, -81, 174, -99, -104, 225, -122, -132, 284, -151, -166, 362, -194, -209, 448
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,7
|
|
LINKS
|
|
|
FORMULA
|
G.f. A(x)=y satisfies 0=f(A(x)^2/x,A(x^2)^2/x^2) where f(u,v) = u^3 + v^3 - 4uv(u+v) - 9uv - (uv)^2.
Euler transform of period 15 sequence [-1,-1,0,-1,-2,0,-1,-1,0,-2,-1,0,-1,-1,0,...].
Expansion of q^(1/2)*(eta(q)*eta(q^5))/(eta(q^3)*eta(q^15)) in powers of q. (End)
|
|
EXAMPLE
|
T30c = 1/q - q - q^3 + q^5 - q^7 - q^9 + 3*q^11 - 2*q^15 + 4*q^17 - 3*q^19 - ...
|
|
MATHEMATICA
|
QP = QPochhammer; s = (QP[q]*QP[q^5])/(QP[q^3]*QP[q^15]) + O[q]^60; CoefficientList[s, q] (* Jean-François Alcover, Nov 13 2015, adapted from PARI *)
|
|
PROG
|
(PARI) a(n)=local(X); if(n<0, 0, X=x+x*O(x^n); polcoeff((eta(X)*eta(X^5))/(eta(X^3)*eta(X^15)), n))
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|