login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058375
Palindromic primes with just two distinct prime digits.
0
353, 373, 727, 757, 32323, 33533, 35353, 72227, 72727, 75557, 77377, 3222223, 3223223, 3233323, 3337333, 3353533, 3553553, 3773773, 7722277, 7733377, 7772777, 322222223, 322323223, 323222323, 323232323, 323333323, 333535333
OFFSET
1,1
MATHEMATICA
Select[ Range[ 1, 780000000, 2 ], PrimeQ[ # ] && Length[ Union[ IntegerDigits[ # ] ] ] == 2 && IntegerDigits[ # ] == Reverse[ IntegerDigits[ # ] ] && Position[ IntegerDigits[ # ], 0 ] == {} && Position[ IntegerDigits[ # ], 1 ] == {} && Position[ IntegerDigits[ # ], 4 ] == {} && Position[ IntegerDigits[ # ], 6 ] == {} && Position[ IntegerDigits[ # ], 8 ] == {} && Position[ IntegerDigits[ # ], 9 ] == {} & ]
Select[Prime[Range[18*10^6]], PalindromeQ[#]&&AllTrue[ IntegerDigits[ #], PrimeQ] && Length[ Union[ IntegerDigits[ #]]] ==2&] (* Harvey P. Dale, Dec 16 2021 *)
CROSSREFS
Cf. A056730.
Sequence in context: A343714 A343715 A177678 * A059635 A003294 A096739
KEYWORD
nonn,base
AUTHOR
Robert G. Wilson v, Dec 18 2000
STATUS
approved