login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177678
Palindromic primes p = q//r//q such that q and r are also palindromic primes.
3
353, 373, 727, 757, 11311, 31013, 31513, 33533, 37273, 37573, 39293, 71317, 71917, 77977, 1175711, 1178711, 1317131, 1513151, 1917191, 3103013, 3106013, 3127213, 3135313, 3155513, 3160613, 3166613, 3181813, 3193913, 3198913, 3304033
OFFSET
1,1
COMMENTS
p = palprime(i), q = palprime(j), r = palprime(k) (see A002385).
Indices (i,j,k): (12,2,3), (13,2,4), (15,4,1), (16,4,3), (24,5,2), (52,2,6), (53,2,8), (56,2,12), (65,2,15), (66,2,16), (70,2,20), (74,4,7), (75,4,10), (88,4,18), (140,11,16), (142,11,17), (174,7,4), (206,8,2), (282,10,4), (318,2,21), (319,2,23), (320,2,27), (321,11,3), (323,2,35), (325,2,36), (326,2,39), (327,2,42), (329,2,44), (331,2,45), (354,2,49), (356,2,50), (357,2,52), (358,2,53), (365,2,61), (366,2,63), (368,2,64), (370,2,67), (372,2,70), (424,2,76), (426,2,79), (430,2,84), (434,2,86), (435,2,87), (437,2,89), (439,2,92), (440,2,94), (464,2,97), (467,2,102), (468,2,103), (469,2,107).
Note an example that the description with q and r is not (necessarily) unique: (2388,2,179) or (2388,11,14) for 313383313 = 3//1338331//3 = 313//383//313.
REFERENCES
M. Gardner: Mathematischer Zirkus, Ullstein Berlin-Frankfurt/Main-Wien, 1988
K. G. Kroeber: Ein Esel lese nie. Mathematik der Palindrome, Rowohlt Tb., Hamburg, 2003
EXAMPLE
3 = palprime(2), 5 = palprime(3), 3//5//3 = 353 = palprime(12) is first term.
3 = palprime(2), 7 = palprime(4), 3//7//3 = 373 = palprime(13) is 2nd term.
CROSSREFS
Sequence in context: A145023 A343714 A343715 * A058375 A059635 A003294
KEYWORD
nonn,base
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 10 2010
STATUS
approved