login
A177678
Palindromic primes p = q//r//q such that q and r are also palindromic primes.
3
353, 373, 727, 757, 11311, 31013, 31513, 33533, 37273, 37573, 39293, 71317, 71917, 77977, 1175711, 1178711, 1317131, 1513151, 1917191, 3103013, 3106013, 3127213, 3135313, 3155513, 3160613, 3166613, 3181813, 3193913, 3198913, 3304033
OFFSET
1,1
COMMENTS
p = palprime(i), q = palprime(j), r = palprime(k) (see A002385).
Indices (i,j,k): (12,2,3), (13,2,4), (15,4,1), (16,4,3), (24,5,2), (52,2,6), (53,2,8), (56,2,12), (65,2,15), (66,2,16), (70,2,20), (74,4,7), (75,4,10), (88,4,18), (140,11,16), (142,11,17), (174,7,4), (206,8,2), (282,10,4), (318,2,21), (319,2,23), (320,2,27), (321,11,3), (323,2,35), (325,2,36), (326,2,39), (327,2,42), (329,2,44), (331,2,45), (354,2,49), (356,2,50), (357,2,52), (358,2,53), (365,2,61), (366,2,63), (368,2,64), (370,2,67), (372,2,70), (424,2,76), (426,2,79), (430,2,84), (434,2,86), (435,2,87), (437,2,89), (439,2,92), (440,2,94), (464,2,97), (467,2,102), (468,2,103), (469,2,107).
Note an example that the description with q and r is not (necessarily) unique: (2388,2,179) or (2388,11,14) for 313383313 = 3//1338331//3 = 313//383//313.
REFERENCES
M. Gardner: Mathematischer Zirkus, Ullstein Berlin-Frankfurt/Main-Wien, 1988
K. G. Kroeber: Ein Esel lese nie. Mathematik der Palindrome, Rowohlt Tb., Hamburg, 2003
EXAMPLE
3 = palprime(2), 5 = palprime(3), 3//5//3 = 353 = palprime(12) is first term.
3 = palprime(2), 7 = palprime(4), 3//7//3 = 373 = palprime(13) is 2nd term.
CROSSREFS
Sequence in context: A145023 A343714 A343715 * A058375 A059635 A003294
KEYWORD
nonn,base
AUTHOR
Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), May 10 2010
STATUS
approved