login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058292 Continued fraction for e^(pi*sqrt(163)). 4
262537412640768743, 1, 1333462407511, 1, 8, 1, 1, 5, 1, 4, 1, 7, 1, 1, 1, 9, 1, 1, 2, 12, 4, 1, 15, 4, 299, 3, 5, 1, 4, 5, 5, 1, 28, 3, 1, 9, 4, 1, 6, 1, 1, 1, 1, 1, 1, 51, 11, 5, 3, 2, 1, 1, 1, 1, 2, 1, 5, 1, 9, 1, 2, 14, 1, 82, 1, 4, 1, 1, 1, 1, 1, 2, 3, 1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

The real number e^(pi*sqrt(163)) ~ a(0)+1-1/a(2) (cf also the Example section) is called Ramanujan's constant: See the main entry A060295 for further information. - M. F. Hasler, Jan 26 2014

REFERENCES

H. M. Stark, An Introduction to Number Theory. Markham, Chicago, 1970, p. 179.

LINKS

Ivan Panchenko, Table of n, a(n) for n = 0..1000

EXAMPLE

e^(Pi*Sqrt(163)) = 262537412640768743.99999999999925007259719818568887935385...

MATHEMATICA

ContinuedFraction[ E^(Pi*Sqrt[163]), 100 ]

PROG

(PARI) default(realprecision, 99); contfrac(exp(Pi*sqrt(163))) \\ With standard precision (38 digits), contfrac() returns only [a(0)+1]. - M. F. Hasler, Jan 26 2014

CROSSREFS

Cf. A060295, A019297.

Sequence in context: A288288 A080128 A132901 * A230668 A228455 A183062

Adjacent sequences:  A058289 A058290 A058291 * A058293 A058294 A058295

KEYWORD

cofr,nonn,easy

AUTHOR

Robert G. Wilson v, Dec 07 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 15 09:12 EDT 2018. Contains 313756 sequences. (Running on oeis4.)