login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058198
Where d(m) (number of divisors, A000005) has risen by at least n.
4
2, 6, 12, 12, 24, 24, 48, 48, 60, 60, 120, 120, 168, 168, 180, 180, 240, 240, 360, 360, 360, 360, 720, 720, 720, 720, 720, 720, 840, 840, 1260, 1260, 1260, 1260, 1680, 1680, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 2520, 3360, 3360, 5040, 5040, 5040, 5040
OFFSET
1,1
COMMENTS
a(n) exists for all n (Turán, 1954). - Amiram Eldar, Apr 13 2024
a(n) >= A061799(n). - David A. Corneth, Apr 13 2024
REFERENCES
József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, p. 39, section II.1.3.a.
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (terms 1..1004 from T. D. Noe, terms 1005..2044 from Amiram Eldar)
Pál Turán, Problem 71, Matematikai Lapok, Vol. 5 (1954), p. 48, entire volume; Solution to Problem 71, by Lajos Takács, ibid., Vol. 56, (1956), p. 154, entire volume.
EXAMPLE
d(11) = 2, d(12) = 6 gives first jump of >= 3, so a(3) = a(4) = 12.
PROG
(Haskell)
a058198 = (+ 1) . a058197 -- Reinhard Zumkeller, Feb 04 2013
CROSSREFS
Equals A058197(n) + 1.
Sequence in context: A057340 A092427 A379520 * A096075 A278256 A066791
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Nov 28 2000
EXTENSIONS
More terms from James A. Sellers, Nov 29 2000
STATUS
approved