Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #24 May 05 2024 19:57:39
%S 2,6,12,12,24,24,48,48,60,60,120,120,168,168,180,180,240,240,360,360,
%T 360,360,720,720,720,720,720,720,840,840,1260,1260,1260,1260,1680,
%U 1680,2520,2520,2520,2520,2520,2520,2520,2520,3360,3360,5040,5040,5040,5040
%N Where d(m) (number of divisors, A000005) has risen by at least n.
%C a(n) exists for all n (Turán, 1954). - _Amiram Eldar_, Apr 13 2024
%C a(n) >= A061799(n). - _David A. Corneth_, Apr 13 2024
%D József Sándor, Dragoslav S. Mitrinovic, and Borislav Crstici, Handbook of Number Theory I, Springer Science & Business Media, 2005, Chapter II, p. 39, section II.1.3.a.
%H David A. Corneth, <a href="/A058198/b058198.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1004 from T. D. Noe, terms 1005..2044 from Amiram Eldar)
%H Pál Turán, Problem 71, Matematikai Lapok, Vol. 5 (1954), p. 48, <a href="https://real-j.mtak.hu/9380">entire volume</a>; Solution to Problem 71, by Lajos Takács, ibid., Vol. 56, (1956), p. 154, <a href="https://real-j.mtak.hu/9386">entire volume</a>.
%e d(11) = 2, d(12) = 6 gives first jump of >= 3, so a(3) = a(4) = 12.
%o (Haskell)
%o a058198 = (+ 1) . a058197 -- _Reinhard Zumkeller_, Feb 04 2013
%Y Equals A058197(n) + 1.
%Y Cf. A000005, A051950, A058199, A061799.
%K nonn,nice,easy
%O 1,1
%A _N. J. A. Sloane_, Nov 28 2000
%E More terms from _James A. Sellers_, Nov 29 2000