login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058195
Areas of a sequence of right-angled figures described below.
1
1, 7, 23, 57, 118, 218, 370, 590, 895, 1305, 1841, 2527, 3388, 4452, 5748, 7308, 9165, 11355, 13915, 16885, 20306, 24222, 28678, 33722, 39403, 45773, 52885, 60795, 69560, 79240, 89896, 101592, 114393, 128367, 143583, 160113, 178030, 197410, 218330, 240870
OFFSET
1,2
COMMENTS
From the NW corner to the SE corner, going the upper (or right) way, the edges have lengths n, n-1, ..., 2, 1, 1, 2, ..., n-1, n. Going the lower (or left) way, the edges have lengths n,1,n-1,2,...,2,n-1,1,n.
FORMULA
a(n) = [(2n^4+10n^3+13n^2+2n)/24], where [] denotes floor. (For even n there is no need for truncation. For odd n the [] removes 1/8.) A formula without [] is (4n^4+20n^3+26n^2+4n+3+3(-1)^(n+1))/48.
From Colin Barker, Oct 07 2015: (Start)
a(n) = 4*a(n-1)-5*a(n-2)+5*a(n-4)-4*a(n-5)+a(n-6) for n>6.
a(n) = (2*n^4+10*n^3+13*n^2+2*n)/24 for n even.
a(n) = (2*n^4+10*n^3+13*n^2+2*n-3)/24 for n odd.
G.f.: -x*(3*x+1) / ((x-1)^5*(x+1)).
(End)
EXAMPLE
For n=6 the figure is (assuming the "#" character is square ...):
######
######
######
######
######
##########
.#########
.#########
.###########
.############
.############
...#############
...#############
...#############
...#############
......###############
......###############
......###############
..........###########
..........###########
...............######
PROG
(PARI) Vec(-x*(3*x+1)/((x-1)^5*(x+1)) + O(x^100)) \\ Colin Barker, Oct 07 2015
CROSSREFS
Sequence in context: A027116 A151718 A027918 * A213770 A235683 A037165
KEYWORD
easy,nonn
AUTHOR
Jonas Wallgren, Nov 26 2000
EXTENSIONS
More terms from James A. Sellers, Dec 06 2000
STATUS
approved