Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Oct 07 2015 08:37:05
%S 1,7,23,57,118,218,370,590,895,1305,1841,2527,3388,4452,5748,7308,
%T 9165,11355,13915,16885,20306,24222,28678,33722,39403,45773,52885,
%U 60795,69560,79240,89896,101592,114393,128367,143583,160113,178030,197410,218330,240870
%N Areas of a sequence of right-angled figures described below.
%C From the NW corner to the SE corner, going the upper (or right) way, the edges have lengths n, n-1, ..., 2, 1, 1, 2, ..., n-1, n. Going the lower (or left) way, the edges have lengths n,1,n-1,2,...,2,n-1,1,n.
%H Colin Barker, <a href="/A058195/b058195.txt">Table of n, a(n) for n = 1..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (4,-5,0,5,-4,1).
%F a(n) = [(2n^4+10n^3+13n^2+2n)/24], where [] denotes floor. (For even n there is no need for truncation. For odd n the [] removes 1/8.) A formula without [] is (4n^4+20n^3+26n^2+4n+3+3(-1)^(n+1))/48.
%F From _Colin Barker_, Oct 07 2015: (Start)
%F a(n) = 4*a(n-1)-5*a(n-2)+5*a(n-4)-4*a(n-5)+a(n-6) for n>6.
%F a(n) = (2*n^4+10*n^3+13*n^2+2*n)/24 for n even.
%F a(n) = (2*n^4+10*n^3+13*n^2+2*n-3)/24 for n odd.
%F G.f.: -x*(3*x+1) / ((x-1)^5*(x+1)).
%F (End)
%e For n=6 the figure is (assuming the "#" character is square ...):
%e ######
%e ######
%e ######
%e ######
%e ######
%e ##########
%e .#########
%e .#########
%e .###########
%e .############
%e .############
%e ...#############
%e ...#############
%e ...#############
%e ...#############
%e ......###############
%e ......###############
%e ......###############
%e ..........###########
%e ..........###########
%e ...............######
%o (PARI) Vec(-x*(3*x+1)/((x-1)^5*(x+1)) + O(x^100)) \\ _Colin Barker_, Oct 07 2015
%K easy,nonn
%O 1,2
%A _Jonas Wallgren_, Nov 26 2000
%E More terms from _James A. Sellers_, Dec 06 2000