login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057283
Numbers k such that k | 10^k + 9^k + 8^k + 7^k + 6^k + 5^k + 4^k + 3^k.
0
1, 2, 4, 10, 13, 38, 50, 169, 250, 1250, 2197, 2390, 3887, 5050, 6250, 18950, 25250, 25316, 28561, 31250, 49250, 88751, 126250, 129826, 156250, 217550, 371293, 377750, 510050, 584233, 593750, 631250, 651157, 781250, 1106750, 1318750, 1326250, 2550250, 3156250, 3741491, 3906250, 4085450, 4417550
OFFSET
1,2
COMMENTS
The only primes in the sequence are 2 and 13. Are all terms except 1 divisible by 2 or 13? - Robert Israel, Feb 06 2018
MAPLE
select(n -> 10 &^ n + 9 &^ n + 8 &^ n + 7 &^ n + 6 &^ n + 5 &^ n + 4 &^ n + 3 &^ n mod n = 0 , [$1..10^6]); # Robert Israel, Feb 06 2018
MATHEMATICA
Select[ Range[ 10^6 ], Mod[ PowerMod[ 10, #, # ] + PowerMod[ 9, #, # ] + PowerMod[ 8, #, # ] + PowerMod[ 7, #, # ] + PowerMod[ 6, #, # ] + PowerMod[ 5, #, # ] + PowerMod[ 4, #, # ] + PowerMod[ 3, #, # ], # ] == 0 & ]
CROSSREFS
Contains A001022.
Sequence in context: A026224 A034233 A056718 * A308987 A107992 A139480
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 22 2000
EXTENSIONS
More terms from Robert Israel, Feb 06 2018
STATUS
approved