login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057271
Triangle T(n,k) of number of digraphs with a source and a sink on n labeled nodes and k arcs, k=0,1,..,n*(n-1).
9
1, 0, 2, 1, 0, 0, 6, 20, 15, 6, 1, 0, 0, 0, 24, 234, 672, 908, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 120, 2544, 16880, 55000, 111225, 161660, 183006, 167660, 125945, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
OFFSET
1,3
REFERENCES
V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 245.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..2680 (rows 1..20)
V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
R. W. Robinson, Counting digraphs with restrictions on the strong components, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
EXAMPLE
Triangle starts:
[1] 1;
[2] 0,2,1;
[3] 0,0,6,20,15,6,1;
[4] 0,0,0,24,234,672,908,792,495,220,66,12,1;
...
The number of digraphs with a source and a sink on 3 labeled nodes is 48 = 6+20+15+6+1.
PROG
(PARI) \\ Following Eqn 20 in the Robinson reference.
Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
G(e, p)={Z(p, k->1/e^(k*(k-1)/2))}
U(e, p)={Z(p, k->e^(k*(k-1)/2))}
DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
StrongD(n, e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
InitFinally(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( S - S^2 + exp(S) * U(e, G(e, S*exp(-S))^2*G(e, DigraphEgf(n, e))) ))}
row(n)={Vecrev(InitFinally(n, 1+'y)[n]) }
{ for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 16 2022
CROSSREFS
Row sums give A049524.
The unlabeled version is A057278.
Sequence in context: A357885 A265163 A057275 * A021480 A201299 A057274
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Sep 14 2000
STATUS
approved