%I #16 Jan 16 2022 17:46:36
%S 1,0,2,1,0,0,6,20,15,6,1,0,0,0,24,234,672,908,792,495,220,66,12,1,0,0,
%T 0,0,120,2544,16880,55000,111225,161660,183006,167660,125945,77520,
%U 38760,15504,4845,1140,190,20,1
%N Triangle T(n,k) of number of digraphs with a source and a sink on n labeled nodes and k arcs, k=0,1,..,n*(n-1).
%D V. Jovovic, G. Kilibarda, Enumeration of labeled initially-finally connected digraphs, Scientific review, Serbian Scientific Society, 19-20 (1996), p. 245.
%H Andrew Howroyd, <a href="/A057271/b057271.txt">Table of n, a(n) for n = 1..2680</a> (rows 1..20)
%H V. Jovovic and G. Kilibarda, <a href="http://dx.doi.org/10.1016/S0012-365X(00)00112-6">Enumeration of labeled quasi-initially connected digraphs</a>, Discrete Math., 224 (2000), 151-163.
%H R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
%e Triangle starts:
%e [1] 1;
%e [2] 0,2,1;
%e [3] 0,0,6,20,15,6,1;
%e [4] 0,0,0,24,234,672,908,792,495,220,66,12,1;
%e ...
%e The number of digraphs with a source and a sink on 3 labeled nodes is 48 = 6+20+15+6+1.
%o (PARI) \\ Following Eqn 20 in the Robinson reference.
%o Z(p,f)={my(n=serprec(p,x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))}
%o G(e,p)={Z(p, k->1/e^(k*(k-1)/2))}
%o U(e,p)={Z(p, k->e^(k*(k-1)/2))}
%o DigraphEgf(n,e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )}
%o StrongD(n,e=2)={-log(U(e, 1/G(e, DigraphEgf(n, e))))}
%o InitFinally(n, e=2)={my(S=StrongD(n, e)); Vec(serlaplace( S - S^2 + exp(S) * U(e, G(e, S*exp(-S))^2*G(e, DigraphEgf(n,e))) ))}
%o row(n)={Vecrev(InitFinally(n, 1+'y)[n]) }
%o { for(n=1, 5, print(row(n))) } \\ _Andrew Howroyd_, Jan 16 2022
%Y Row sums give A049524.
%Y The unlabeled version is A057278.
%Y Cf. A057272, A057273, A057274, A057275, A062735, A350791.
%K nonn,tabf
%O 1,3
%A _Vladeta Jovovic_, Goran Kilibarda, Sep 14 2000