login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057275
Triangle T(n,k) of number of unilaterally connected digraphs on n labeled nodes and with k arcs, k=0..n*(n-1).
5
1, 0, 2, 1, 0, 0, 6, 20, 15, 6, 1, 0, 0, 0, 24, 222, 660, 908, 792, 495, 220, 66, 12, 1, 0, 0, 0, 0, 120, 2304, 15540, 52700, 109545, 161120, 182946, 167660, 125945, 77520, 38760, 15504, 4845, 1140, 190, 20, 1
OFFSET
1,3
LINKS
V. Jovovic and G. Kilibarda, Enumeration of labeled quasi-initially connected digraphs, Discrete Math., 224 (2000), 151-163.
EXAMPLE
Triangle begins:
[1],
[0,2,1],
[0,0,6,20,15,6,1],
[0,0,0,0,24,222,660,908,792,495,220,66,12,1],
...
The number of unilaterally connected digraphs on 3 labeled nodes is 48 = 6+20+15+6+1.
PROG
(PARI) \\ See A057273 for Strong.
Unilaterally(n, e=2)={my(u=vector(n), s=Strong(n, e)); for(n=1, #u, u[n]=vector(n, k, binomial(n, k)*s[k]*if(k==n, 1, sum(j=1, n-k, e^(k*(n-k-j))*(e^(k*j)-1)*u[n-k][j])))); vector(#u, n, vecsum(u[n]))}
row(n)={Vecrev(Unilaterally(n, 1+'y)[n])}
{ for(n=1, 5, print(row(n))) } \\ Andrew Howroyd, Jan 19 2022
CROSSREFS
Row sums give A003029.
The unlabeled version is A057270.
Sequence in context: A267163 A357885 A265163 * A057271 A021480 A201299
KEYWORD
nonn,tabf
AUTHOR
Vladeta Jovovic, Goran Kilibarda, Sep 14 2000
STATUS
approved