login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057170
2-enumeration of 2n X 2n half-turn symmetric alternating-sign matrices.
1
1, 2, 12, 288, 26880, 10035200, 14836039680, 87734404251648, 2064716402685640704, 194361783607326689722368, 72958995691997968023051829248, 109548594452892660460226753134067712, 656593430123179564638165745256190909087744, 15741504841171021653720624575980053578961033101312
OFFSET
0,2
LINKS
G. Kuperberg, Symmetry classes of alternating-sign matrices under one roof, arXiv:math/0008184 [math.CO], 2000-2001; [Th. 3].
MAPLE
A057170 := proc(n) local i, j, t1; t1 := 2^(n^2); for i to n do for j to n do if j-i mod 2 <> 0 then t1 := t1*(2*j - 2*i + 1)/(2*j - 2*i) end if end do end do; t1 end proc;
MATHEMATICA
a[n_] := Module[{t1 = 2^(n^2)}, Do[If[OddQ[j-i], t1 = t1*(2*j - 2*i + 1) / (2*j - 2*i)], {j, n}, {i, n}]; t1];
Array[a, 14, 0] (* Jean-François Alcover, Nov 28 2017, from Maple *)
CROSSREFS
Sequence in context: A003121 A211937 A176037 * A200564 A008338 A000178
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 04 2001
STATUS
approved