

A057173


Numbers n such that (7^n + 1)/8 is a prime.


14



3, 17, 23, 29, 47, 61, 1619, 18251, 106187, 201653, 1178033
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

(7^1619+1)/8, a 1368digit number, has been certified prime with Primo.  Rick L. Shepherd, May 19 2002


LINKS

Table of n, a(n) for n=1..11.
P. Bourdelais, A Generalized Repunit Conjecture
J. Brillhart et al., Factorizations of b^n + 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
H. Dubner and T. Granlund, Primes of the Form (b^n+1)/(b+1), J. Integer Sequences, 3 (2000), #P00.2.7.
H. Lifchitz, Mersenne and Fermat primes field
Eric Weisstein's World of Mathematics, Repunit


MATHEMATICA

lst={}; Do[p=(7^n+1)/8; If[PrimeQ[p], AppendTo[lst, n]], {n, 7!}]; lst (* Vladimir Joseph Stephan Orlovsky, Sep 29 2008 *)


PROG

(PARI) isok(n) = (denominator(p=(7^n+1)/8)==1) && isprime(p); \\ Michel Marcus, Oct 30 2017


CROSSREFS

Sequence in context: A019380 A296937 A126692 * A109371 A272176 A082372
Adjacent sequences: A057170 A057171 A057172 * A057174 A057175 A057176


KEYWORD

nonn,more


AUTHOR

N. J. A. Sloane, Sep 15 2000


EXTENSIONS

a(9)=106187 is a probable prime based on Fermat primality testing and trial factoring to 2E13.  Paul Bourdelais, Apr 07 2008
a(10)=201653 is a probable prime discovered by Paul Bourdelais, Feb 17 2010
a(11)=1178033 corresponds to a probable prime discovered by Paul Bourdelais, Jan 11 2019


STATUS

approved



