login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056772
Numbers n such that phi(n+4) = phi(n) + 4.
6
3, 7, 12, 13, 18, 19, 24, 28, 36, 37, 40, 43, 66, 67, 79, 88, 97, 103, 109, 124, 127, 163, 184, 193, 223, 229, 232, 277, 307, 313, 328, 349, 379, 397, 424, 439, 457, 463, 487, 499, 508, 613, 643, 664, 673, 712, 739, 757, 769, 823, 853, 859, 877, 883, 904, 907
OFFSET
1,1
COMMENTS
In contrast with A015913, composite solutions are not rare. Prime solutions are common.
From Kevin J. Gomez, Mar 02 2016: (Start)
Composite solutions have two known forms:
n such that n = 4 * (2^p - 1) where 2^p - 1 is a Mersenne prime. (A001348)
n such that n = 8q where q is a Sophie Germain prime. (A005394)
There are composite solutions (such as 36) that do not fit either of these forms.
(End)
LINKS
EXAMPLE
n=1048: phi(1048)=520, phi(1048+4)=524.
MATHEMATICA
Select[Range@1000, EulerPhi@(# + 4)== EulerPhi[#] + 4 &] (* Vincenzo Librandi, Sep 11 2015 *)
Position[Partition[EulerPhi[Range[1000]], 5, 1], _?(#[[1]]+4==#[[5]]&), 1, Heads-> False]//Flatten (* Harvey P. Dale, Dec 18 2019 *)
PROG
(PARI) isok(n) = eulerphi(n+4) == eulerphi(n) + 4; \\ Michel Marcus, Sep 11 2015
(Magma) [n: n in [1..1000] | EulerPhi(n+4) eq EulerPhi(n)+4]; // Vincenzo Librandi, Sep 11 2015
CROSSREFS
Cf. A015913 (sigma(n+4) = sigma(n) + 4).
Cf. A001838 (k=2), this sequence (k=4), A262084 (k=6), A262085 (k=8), A262086 (k=10).
Sequence in context: A243705 A057927 A298788 * A024614 A230109 A045134
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 17 2000
STATUS
approved