login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056699
First differences are 2,1,-2,3 (repeated).
4
1, 3, 4, 2, 5, 7, 8, 6, 9, 11, 12, 10, 13, 15, 16, 14, 17, 19, 20, 18, 21, 23, 24, 22, 25, 27, 28, 26, 29, 31, 32, 30, 33, 35, 36, 34, 37, 39, 40, 38, 41, 43, 44, 42, 45, 47, 48, 46, 49, 51, 52, 50, 53, 55, 56, 54, 57, 59, 60, 58, 61, 63, 64, 62, 65, 67, 68, 66
OFFSET
1,2
COMMENTS
Second quadrisection of natural numbers shifted right two places. - Ralf Stephan, Jun 10 2005
A permutation of the natural numbers partitioned into quadruples [4k-3,4k-1,4k,4k-2] for k > 0. Partition the natural number sequence into quadruples starting with (1,2,3,4); swap the second and third elements, then swap the third and fourth elements; repeat for all quadruples. - Guenther Schrack, Oct 18 2017
FORMULA
G.f.: x*(2*x^4 - 2*x^3 + x^2 + 2*x + 1)/((x-1)^2*(x+1)*(x^2+1)). - Colin Barker, Nov 08 2012
From Guenther Schrack, Oct 18 2017: (Start)
a(n) = a(n-4) + 4 for n > 4.
a(n) = n + periodic[0,1,1,-2].
a(n) = A092486(A067060(n) - 1) for n > 0.
a(n) = A292576(n) - 2*((-1)^floor(n/2)) for n > 0.
a(A116966(n-1)) = A263449(n-1) for n > 0.
A263449(a(n) - 1) = A116966(n-1) for n > 0.
a(n+2) - a(n) = (-1)^floor(n^2/4)*A132400(n+1) for n > 0.
a(n) = a(n-1) + a(n-4) - a(n-5) for n > 5. (End)
a(n) = A298364(n-1) + 1 for n > 1. - Guenther Schrack, Feb 04 2018
MATHEMATICA
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 3, 4, 2, 5}, 70] (* Harvey P. Dale, May 10 2014 *)
Table[Floor[(n - ((-1)^n + (-1)^(n (n - 1) / 2) (2 + (-1)^n)) / 2)], {n, 100}] (* Vincenzo Librandi, Feb 05 2018 *)
PROG
(MATLAB) a = [1 3 4 2];
max = 10000; % Generation of a b-file
for n := 5:max
a(n) = a(n-4) + 4;
end;
% Guenther Schrack, Oct 18 2017
(PARI) for(n=1, 10000, print1(n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n))/2, ", ")) \\ Guenther Schrack, Oct 18 2017
(Magma) [Floor((n - ((-1)^n + (-1)^(n*(n-1)/2)*(2+(-1)^n)) / 2)): n in [1..100]]; // Vincenzo Librandi, Feb 05 2018
CROSSREFS
Inverse: A284307.
Sequence of fixed points: A016813(n-1) for n > 0.
Odd elements: A005408(n-1) for n > 0.
Indices of odd elements: A042963(n) for n > 0.
Even elements: 2*A103889(n) for n > 0.
Indices of even elements: A014601(n) for n > 0.
Sequence in context: A322466 A211377 A350218 * A297969 A127296 A276958
KEYWORD
nonn,easy
AUTHOR
Michael Knauth (knauth_jur(AT)yahoo.de), Nov 21 2003
STATUS
approved