login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056649
a(n) = A056061(n) - A034444(A056647(n)).
0
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 2, 4, 6, 2, 2, 0, 0, 1, 2, 0, 0, 0, 2, 0, 0, 0, 1, 0, 1, 6, 8, 0, 0, 0, 4, 4, 6, 2, 2, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 1, 0, 2, 4, 4, 0, 0, 4, 8, 2, 3, 6, 8, 4, 8, 2, 2, 4, 4, 8, 8, 0, 0, 0, 4, 2, 4, 3, 4, 2, 3, 4
OFFSET
1,26
COMMENTS
Previous name, "Number of non-unitary square divisors of central binomial coefficient", was incorrect. See A376556 for the correct sequence with this name. - Amiram Eldar, Sep 28 2024
FORMULA
a(n) = A056061(n) - 2^r, where r = A001221(A000188(A001405(n))/A055229(A001405(n))).
EXAMPLE
a(28) = A056061(28) - A034444(A056647(28)) = A056061(28) - A034444(25) = 8 - 2 = 6.
MATHEMATICA
A056061[n_] := Count[Divisors@Binomial[n, Floor[n/2]], d_ /; IntegerQ@Sqrt@d]; A008833[n_] := First[Select[Reverse[Divisors[n]], IntegerQ[Sqrt[#]] &, 1]]; A055229[n_] := With[{sf = Times @@ Power @@@ ({#[[1]], Mod[#[[2]], 2]} & /@ FactorInteger[n])}, GCD[sf, n/sf]];
Table[A056061[n] - 2^(PrimeNu[Sqrt[A008833[Binomial[n, Floor[n/2]]]]/ A055229[Binomial[n, Floor[n/2]]]]), {n, 1, 15}] (* G. C. Greubel, May 20 2017 *)
KEYWORD
nonn
AUTHOR
Labos Elemer, Aug 09 2000
EXTENSIONS
Incorrect name replaced with a formula by Amiram Eldar, Sep 28 2024
STATUS
approved