OFFSET
1,1
COMMENTS
Numbers n such that (670*10^n + 23)/9 is prime.
Numbers n such that digit 7 followed by n >= 0 occurrences of digit 4 followed by digit 7 is prime.
Numbers corresponding to terms <= 1577 are certified primes. For larger numbers see P. De Geest, PDP Reference Table.
REFERENCES
Klaus Brockhaus and Walter Oberschelp, Zahlenfolgen mit homogenem Ziffernkern, MNU 59/8 (2006), pp. 462-467.
LINKS
Patrick De Geest, PDP Reference Table - 747.
Makoto Kamada, Prime numbers of the form 744...447.
FORMULA
a(n) = A082712(n) - 2.
EXAMPLE
74444444447 is prime, hence 9 is a term.
MATHEMATICA
Select[Range[0, 2000], PrimeQ[(670 10^# + 23) / 9] &] (* Vincenzo Librandi, Nov 03 2014 *)
PROG
(PARI) a=77; for(n=0, 1600, if(isprime(a), print1(n, ", ")); a=10*a-23)
(PARI) for(n=0, 1600, if(isprime((670*10^n+23)/9), print1(n, ", ")))
CROSSREFS
KEYWORD
nonn,hard,more
AUTHOR
Robert G. Wilson v, Aug 18 2000
EXTENSIONS
Edited by Klaus Brockhaus and Walter Oberschelp (oberschelp(AT)informatik.rwth-aachen.de), Dec 03 2004
More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Jan 02 2008
Two more terms added from PDP table and comments section updated by Patrick De Geest, Nov 02 2014
Edited by Ray Chandler, Nov 05 2014
STATUS
approved