login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056082
Numbers k such that k^4 == 1 (mod 5^3).
8
1, 57, 68, 124, 126, 182, 193, 249, 251, 307, 318, 374, 376, 432, 443, 499, 501, 557, 568, 624, 626, 682, 693, 749, 751, 807, 818, 874, 876, 932, 943, 999, 1001, 1057, 1068, 1124, 1126, 1182, 1193, 1249, 1251, 1307, 1318, 1374, 1376, 1432, 1443, 1499, 1501
OFFSET
1,2
COMMENTS
Numbers that are congruent to {1, 57, 68, 124} mod 125.
FORMULA
From Wesley Ivan Hurt, Jun 07 2016: (Start)
G.f.: x*(1+56*x+11*x^2+56*x^3+x^4)/((x-1)^2*(1+x+x^2+x^3)).
a(n) = a(n-1) + a(n-4) - a(n-5) for n>5.
a(n) = (250*n-125+99*i^(2*n)+(9-9*i)*i^(-n)+(9+9*i)*i^n)/8 where i=sqrt(-1). (End)
MAPLE
A056082:=n->(250*n-125+99*I^(2*n)+(9-9*I)*I^(-n)+(9+9*I)*I^n)/8: seq(A056082(n), n=1..100); # Wesley Ivan Hurt, Jun 07 2016
MATHEMATICA
x=5; Select[ Range[ 1000 ], PowerMod[ #, x-1, x^3 ]==1& ]
PROG
(Magma) [n : n in [0..2000] | n mod 125 in [1, 57, 68, 124]]; // Wesley Ivan Hurt, Jun 07 2016
KEYWORD
nonn,easy
AUTHOR
Robert G. Wilson v, Jun 08 2000
STATUS
approved