login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A055755
4n^2+1, 2n^2+1, 2n^2-1 are all prime.
1
3, 42, 45, 102, 132, 153, 237, 297, 375, 468, 570, 990, 2085, 2478, 2712, 3240, 4743, 5382, 5517, 6828, 7962, 8970, 8982, 9033, 9570, 9612, 9747, 9813, 10692, 12363, 12453, 12468, 12750, 13902, 14763, 14925, 15750, 16365, 17118, 17688, 19527
OFFSET
1,1
LINKS
EXAMPLE
42 is included because 4*42^2+1, 2*42^2+1, 2*42^2-1 are all prime numbers.
MAPLE
with(numtheory): for n from 1 to 50000 do if isprime(4*n^2+1) and isprime(2*n^2+1) and isprime(2*n^2-1) then printf(`%d, `, n) fi: od:
MATHEMATICA
a={}; Do[If[PrimeQ[4n^2+1] && PrimeQ[2n^2+1] && PrimeQ[2n^2-1], AppendTo[a, n]], {n, 10000}]; a (* Peter J. C. Moses, Apr 02 2013 *)
CROSSREFS
Cf. A001912.
Sequence in context: A228456 A238717 A057013 * A249046 A237661 A116006
KEYWORD
easy,nonn
AUTHOR
Harvey P. Dale, Jul 12 2000
EXTENSIONS
More terms from James A. Sellers, Jul 13 2000
STATUS
approved