login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

4n^2+1, 2n^2+1, 2n^2-1 are all prime.
1

%I #8 Apr 02 2013 20:46:01

%S 3,42,45,102,132,153,237,297,375,468,570,990,2085,2478,2712,3240,4743,

%T 5382,5517,6828,7962,8970,8982,9033,9570,9612,9747,9813,10692,12363,

%U 12453,12468,12750,13902,14763,14925,15750,16365,17118,17688,19527

%N 4n^2+1, 2n^2+1, 2n^2-1 are all prime.

%H Peter J. C. Moses, <a href="/A055755/b055755.txt">Table of n, a(n) for n = 1..10000</a>

%e 42 is included because 4*42^2+1, 2*42^2+1, 2*42^2-1 are all prime numbers.

%p with(numtheory): for n from 1 to 50000 do if isprime(4*n^2+1) and isprime(2*n^2+1) and isprime(2*n^2-1) then printf(`%d,`,n) fi: od:

%t a={};Do[If[PrimeQ[4n^2+1] && PrimeQ[2n^2+1] && PrimeQ[2n^2-1], AppendTo[a,n]], {n,10000}]; a (* _Peter J. C. Moses_, Apr 02 2013 *)

%Y Cf. A001912.

%K easy,nonn

%O 1,1

%A _Harvey P. Dale_, Jul 12 2000

%E More terms from _James A. Sellers_, Jul 13 2000